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Abstract

In this work, we show that data-intensive and frequently-used service functions such as memory allocation and de-

allocation entangle with application�s working set and become a major cause for cache misses. We present our technique

that transfers the allocation and de-allocation functions� executions from main CPU to a separate processor residing on

chip with DRAM (Intelligent Memory Manager). The results manifested in the paper state that, 60% of the cache

misses caused by the service functions are eliminated when using our technique. We believe that cache performance

of applications in computer system is poor due to their indulgence for the service functions.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The speed gap between CPU and memory con-

tinues to widen and memory latency continues to

grow due to the fact that CPU speed grows with

much faster rate than memory speed grows with

[10]. Recent studies by Stephen Chou from Prince-

ton University show that we might be able to beat
Moore�s law [21], in which case memory speed will
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lag farther behind and consequently memory la-

tency will become even more pronounced. He, Ste-

phen Chou, claims that his new invention, LADI

(laser assisted direct input)—a new technology

that may replace photolithography1 increases

chip�s density by a factor of 100.

Standard techniques such as deeper memory

hierarchies and larger on chip caches fail to toler-
ate memory latency, mainly because application�s
data sizes are growing and programming styles
ed.

1 The process of transferring geometric shapes onto a mask

on the surface of a silicon wafer.
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are changing. Nowadays, programmers practice

the use of linked data structures, which requires

dynamic memory allocation. The proximity of

storage layout of such applications does not imply

the same degree of spatial locality that array based
applications� does.

More recent approaches such as Multithreading

[2,23,31], Memory Forwarding [20], Prefetching

[6,19,22], and Jump Pointers [29] have been ex-

plored to address memory latency in pointer based

applications. Multithreading tends to combat la-

tency by passing the control of execution to other

threads when a long latency operation is encoun-
tered. Prefetching tries to predict the access pat-

terns of data ahead of time and bring what is

needed into the cache. Jump Pointers provide di-

rect access to non-adjacent nodes in linked data

structures to alleviate the shortcomings of pre-

fetching when insufficient work is found to cover

the prefetching latency. Memory Forwarding re-

locates non-adjacent nodes to adjacent memory
spaces. Multithreading requires parallelism in the

applications and extra hardware that manages

threads and switching among threads. Software-

Controlled Multithreading relaxes the hardware

complexity by shifting the responsibility of switch-

ing time decision from hardware to software

and enhances the performance when application

lacks parallelism. Prefetching, Jump Pointers,
and Memory Forwarding do not require parallel-

ism in an application, but hardware or software

overhead is added to the system. Hardware over-

head decelerates the clock (‘‘simpler is faster’’),

whereas software overhead uses CPU cycles and

pollutes the cache.

Our approach of tolerating memory latency is

originally motivated by a different trend in the de-
sign of systems, i.e., Intelligent Memory Devices

such as Berkeley IRAM [26] and Active Pages

[25]. Similar to Active Pages, within the DRAM

chip, in our research we use a small processor as

an aid to the main CPU, particularly for dealing

with memory related operations. These operations

include memory management, prefetching of data,

management of Jump Pointers, and relocation of
data (i.e., Memory Forwarding) to improve local-

ity. Thus we address memory latency using mem-

ory hierarchies by better utilizing hierarchies to
improve the performance. Using a separate proces-

sor integrated on chip with DRAM for these oper-

ations reduces (or eliminates) the possibility of

cache pollution inherent in current approaches.

In order to evaluate the efficacy of our ap-
proach before actually developing an Intelligent

Memory unit, in this work we investigate the cache

misses caused by a subset of memory management

functions (allocation and de-allocation). In Object

Oriented and Linked Data Structured applications

allocation and de-allocation functions are invoked

very frequently. These memory management func-

tions are also very data intensive, but require only
integer arithmetic. Therefore, a simple integer

CPU embedded inside a DRAM chip offers a via-

ble option for migrating allocation/de-allocation

functions from main CPU to DRAM, and

eliminates the cache pollution caused by those

functions. In this paper we show that moving

memory management functions from main CPU

to Intelligent DRAM eliminates, on average,
60% of cache misses (as compared to the conven-

tional method where allocation/de-allocation func-

tions are performed by the main CPU).

Furthermore, we compare the performance of a

variety of well known general purpose allocators.

We also show that our own variations to the

Binary Tree allocator results in better cache

localities when compared to other allocators
[14,27,28].

In this paper, first we provide a brief back-

ground of related research. Then, we introduce

our Intelligent Memory Manager�s architecture.

Section 4 represents the framework used to empiri-

cally validate the claim of this work. Final sections

illustrate the results and draw the conclusions

based upon the results and thoughts of the
authors.
2. Research background

Memory often is the limiting factor in achieving

high performance in modern computer systems. A

variety of techniques are proposed to hide memory
latency and improve application�s performance. Of

these attempts, the approach of merging logic with

memory inspired our work. The objective of this
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3 All chunks are in the form of fixed size pages, and about

only several hundred pages are needed for the total execution

period of each running process.
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work is to benefit from embedded logic in DRAM

for migrating memory management operations

currently performed by the main CPU and accord-

ingly eliminate the CPU cache pollution caused by

these operations. To provide a context and back-
ground for our work, in the following subsections

we briefly describe the research in these two areas

that underlie our research.

2.1. Intelligent memory devices

Utilizing more metal layers with faster transis-

tors in DRAM chips, it is possible to provide a
reasonably fast CPU in the heart of memory. By

co-locating processor and memory, memory laten-

cies can be drastically reduced. DRAM can pro-

vide much larger streams of data at a much

faster rate to a processor if both processor and

DRAM are in the same chip. This idea attracted

researchers, leading to the development of Intelli-

gent Memory Devices. Some researchers have
utilized Intelligent Memories for vector process-

ing as a stand-alone processor called Intelligent

RAM (IRAM) [26]. The Berkeley IRAM project

demonstrates that even when operating at a mod-

erate clock rate of 500 MHz, Vector-IRAMs can

achieve 4 Gflops, while Cray machines achieve

only 1.5 Gflops [5]. IRAMs are particularly suit-

able for DSP and multimedia applications which
contain significant amounts of vector level paral-

lelism. More recently, researchers are exploring

the use of IRAM devices to build energy efficient

portable multimedia devices.

Embedded DRAM (eRAM) is another family

of Intelligent Memory Devices [24]. M32R, the

main core of eRAM which contains a CPU and

DRAM, has been used in a variety of applications.
M32R/D with an off-chip I/O ASIC is used for

multimedia applications, for example, JPEG com-

pression and decompression. Open Core M32R

which integrates CPU, SRAM, DRAM, and ver-

satile peripherals into a single chip can be used

for portable multimedia devices. M32R media

Turbo, which includes a vector processor and a

super-audio processor along with a CPU and
DRAM, is promoted for applications that demand

high performance when dealing with large streams

of data (such as speech recognition and image pro-
cessing). M32R core is based on an extendable

dual-issue, VLIW instruction set.

Active Pages is yet another approach that takes

advantage of logic and memory integration [25].

Active Pages consists of a page of memory and a
set of associated functions to improve processing

power. RADram2 is the basis of Active Pages that

gives flexibility in customizing functionality for

each application. RADram can potentially replace

DRAM in conventional architectures when some

additional control logic and control lines are

added.

The literature contains other variations to the
idea of embedding logic within DRAM devices

for improving memory latencies or improving en-

ergy efficiencies.

2.2. Memory management techniques

Memory is the most critical resource in com-

puter systems both in terms of speed and capacity.
The efficiency of memory management algorithms,

particularly in object oriented environments, has

captured the attention of researchers. For fully

comprehending and appreciating the memory

management systems, it is necessary to realize its

roles in a typical computer system. As shown in

Fig. 1, the OS Memory Manager allocates large

chunks of memory to user level runtime systems.
These runtime systems (user level processes) are

responsible for allocating small amounts of mem-

ory when new program variables are created [7].

The separation of memory management is needed

to eliminate too frequent kernel calls. Although in

principle both the Operating System and Process

Memory Managers can be excised away from main

CPU and be placed under the responsibility of
Intelligent Memory Manager, our work is limited

to the Process Memory Manager for several rea-

sons. One reason is that the OS Memory Man-

ager�s task is very simple.3 On the other hand,

the Process Memory Manager is required to allo-

cate and de-allocate several tens of thousands of
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Fig. 1. Memory management hierarchy.
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objects of different sizes for each process [27]. Ob-

jects can be as small as a byte or as big as several

pages. The following subsection describes the most

commonly used Process Memory Management

techniques.4

2.2.1. Allocation techniques

Dynamic memory management is an important

problem studied by researchers for the past four

decades. Every so often the need for a more effi-

cient implementation of memory allocation, both

in terms of memory usage and execution perfor-

mance becomes acute leading to newer techniques.
The need for more efficient memory manager is

currently being driven by the popularity of ob-

ject-oriented languages in general, and Java in par-

ticular [1,3].

An allocator�s task is to organize and track the

free chunks of memory as well as memory cur-

rently being used by the running process. The pri-

mary goals of any efficient memory manager are
high storage utilization and execution performance

[32]. However, current implementations have

failed to achieve both aims at the same time. For

example, Sequential Fit algorithms show high

storage utilization but poor execution performance

[13,27]. While Segregated Free lists cause higher

fragmentations, yet their performance is the best

among allocators. Well-known placement policies
such as Best Fit and First Fit have been explored

with both Sequential Fit and Segregated Free lists.
4 They are also known as allocation techniques.
Currently used memory allocation schemes can

be classified into Sequential Fit algorithms, Buddy

Systems, Segregated Free Lists, and Binary Tree

techniques.

The Sequential Fit approach (including First
Fit and Best Fit) keeps track of available chunks

of memory in a linked list. Known Sequential Fit

techniques differ in how they track the memory

blocks, how they allocate memory requests from

the free blocks, and how they place newly freed ob-

jects back into the free list. When a process re-

leases memory, these chunks are added to the

free list, either in front or in place, if the list is
sorted by addresses (Address Order [32]). When

an allocation request arrives, the free list is

searched until an appropriate chunk is found.

The memory is allocated either by granting the en-

tire chunk or by splitting the chunk (if the chunk is

larger than the requested size). The Best Fit meth-

od tries to find the smallest chunk that is at least as

large as the request, whereas the First Fit method
finds the first chunk that is at least as large as the

request [17]. The Best Fit method may involve de-

lays in allocation while the First Fit method leads

to more external fragmentation [13]. If the free list

is in Address Order, newly freed chunks may be

combined with their surrounding blocks. Such

practice, referred to as coalescing, is made possible

by employing boundary tags in the doubly linked
list of address ordered free chunks [17].

In Buddy Systems the size of any memory

chunk (live, free, or garbage) is 2k for some k

[16,17]. Two chunks of the same size that are next

to each other, in terms of their memory addresses,

are known as buddies. If a newly freed chunk finds
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its buddy among free chunks, the two buddies can

be combined into a larger chunk of size 2k+1. Dur-

ing allocation, larger blocks are split into equal

sized buddies until a small chunk that is at least

as large as the request is created. Large internal
fragmentation is the main disadvantage of this

technique. It has been reported that as much as

25% of memory is wasted due to fragmentation

in buddy systems [13]. An alternate implementa-

tion, Double Buddy, which creates buddies of

equal size but does not require the sizes to be 2k,

is shown to reduce the fragmentation by half

[13,33].
Segregated Free List approaches maintain mul-

tiple linked lists, one for each different sized

chunks of available memory. Allocation and de-

allocation requests are directed to their associated

lists based upon the size of the requests. Segre-

gated Free Lists are further classified into two cat-

egories: Simple Segregated Storage and Segregated

Fit [32]. No coalescing or splitting is performed in
Simple Segregated Storage and the size of chunks

remains unaltered. If a request cannot be satisfied

from its associated sized list, additional memory

from operating system is acquired using sbrk or

mmap system calls. In contrast, the Segregated

Fit allocator attempts to satisfy the request from

a list containing larger sized chunks—a larger

chunk is split into several smaller chunks if re-
quired. Coalescing is also employed in Segregated

Fit allocators to improve storage utilization. Sim-

ple Segregated Storage allocators are best known

for their high execution performance while Segre-

gated Fit allocators� advantage is their higher stor-
age utilization.

In Binary Tree allocators free chunks of mem-

ory are kept in a binary search tree whose search
key is the address of the free chunks of memory.

Known Binary Tree allocators are Cartesian Tree,

Address Ordered Binary Tree, and Segregated Bin-

ary Tree. The Cartesian Tree, which was proposed

almost two decades ago, is an address ordered bin-

ary search tree, which also forces its tree of

free chunks to form a heap tree in terms of

chunk size [30]. In other words, Cartesian Tree
allocators maintain a binary tree whose nodes

are the free chunks of memory with the following

conditions:
(a) address of descendents on left (if any) 6 ad-

dress of parent 6 address of descendents on

right (if any),

(b) size of descendents on left (if any) 6 size of

parent P size of descendents on right (if
any).

The latter that mandates Cartesian Tree to have

its largest node at the root of the tree, causes the

tree to usually become unbalanced and possibly

degrade into a linked list. In Address Ordered Bin-

ary Tree, the free chunks of memory are also main-

tained in a binary search tree similar to Cartesian
Tree [14,27]. However, to overcome the ineffi-

ciency forced by the size restriction (condition b)

of Cartesian Tree allocator, not only is this restric-

tion entirely removed in Address Ordered Binary

Tree, but also it is replaced with a new strategy

that enhances the allocation speed of this tech-

nique. In this specific implementation of Binary

Tree algorithms, each node of the tree contains
the sizes of the largest memory chunks available

in its left and right subtrees. This information

can be utilized to improve the response time of

allocation requests and implement Better Fit poli-

cies [27,32]. Binary Tree algorithms in general are

ideally suited for coalescing the free chunks of

memory, since the tree is address ordered. This

leads to better storage utilization.
In a manner similar to Segregated Fit tech-

nique, Segregated Binary Tree keeps several Ad-

dress Ordered Binary Trees, one for each class

size [28]. Each tree is typically small, thus reduc-

ing the search time while retaining the memory uti-

lization advantage of Address Ordered Binary

Tree.
3. Intelligent Memory Manager�s architecture

It is our goal to make the Intelligent Memory

Manager (IMM) not limited to a specific design.

Nonetheless, this section illustrates the possibilities

one could consider for the architecture of IMM.

Generally speaking any piece of logic other than
main CPU is a potential host for performing mem-

ory management service functions. For instance,

we can build a coprocessor with its designated
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cache, to execute memory management service

functions, along with the main CPU on the same

chip. This scenario simplifies the design, where

the memory bus interface needs no change.

The characteristics of memory management
algorithms is that they are very data intensive as

they maintain the free chunks of memory in linked

lists. Their main functionality also requires very

frequent visits to the nodes of the free chunk lists.

This property suggests that memory management

service functions be executed by a processor close

to or on chip with DRAM. Therefore, we propose

two streams of design for IMM; an extension to
the centralized controller used in DRAM bus con-

figurations5 [8], or Embedded DRAM [4,25,26].

The latter limits the amount of memory on

DRAM chip. With current Gb DRAM techno-

logy, we can mount no more than 256 MB DRAM

and reasonable logic (powerful enough to perform

simple memory management functions) on a single

chip. On the other hand, centralized controller de-
sign suffers from poor execution speed since it

needs to communicate with DRAM chips via the

common bus. In both designs the conventional

memory bus interface needs to change. We pro-

pose the addition of two functions to the standard

memory interfaces.

• allocation and de-allocation interfaces (addi-
tional interfaces)

– allocate(size)

– de-allocate(virtual-address)

• standard conventional interfaces

– read(virtual-address)

– write(virtual-address,data)

Figs. 2 and 3 depict the high level design of

these two configurations.

It is reported that 5 Gb DRAM technology can

accommodate up to 32 Kbits internal bus width

with 1.7 GHz speed for Embedded DRAM, and

0.8 GHz 128 bit wide external bus in the case of
5 Non-interleaved SDRAMs or SLDRAMs in Rambus

configuration.
standard DRAM [12]. Using Embedded DRAM

or centralized controller, we feel that IMM is fea-

sible with current technologies. The functionality

required to implement memory management can

be achieved by either using ASIC or more tradi-
tional pipelined execution engines. In this paper,

we will not deal with detailed design of IMM.

The goal of this paper is to illuminate on our

hypothesis that migration of memory management

functions to a separate processor will eliminate sig-

nificant amount of cache pollution.
4. Experimental framework

To confirm the claims we have made, and also

to compare the cache performance of different

memory managers (allocators), we have conducted

two stems of experiments on an Alpha 21264 run-

ning the Tru64 operating system [15]. First, a sin-

gle process is used to execute both application and
the memory management functions. This scenario

simulates conventional systems using a single CPU

for both application and memory manager. Next,

a pair of processes are used to execute application

and its service functions separately. This simulates

the use of a separate processor for memory man-

agement functions, which can potentially be

embedded in a DRAM chip. The latter experiment
exploits a shared memory segment for interprocess

communication. These processes are instrumented

using ATOM instrumentation and analysis rou-

tines [9]. Instrumentation routines detect the mem-

ory references and call analysis routines, which

simulate different cache organizations. The use of

shared memory interprocess communication adds

a considerable amount of system overhead and
consequently blurs the aim of this work. To avoid

such artifact, using instrumentation routines, we

have discarded the references made by interprocess

communication system calls. We have also sepa-

rated the application heap and analysis routines�
heap so that ATOM activities do not impact the

locality behavior of the applications. Fig. 4 depicts

IMM�s framework.
To illustrate the wide applicability of our claim

we have employed two sets of benchmarks, a

subset of SPEC CINT2000 [11] and a subset of



Table 1

Benchmark description

Benchmark Description Input

SPEC2000int

gzip gnu zip data

compressor

test/input.compressed 2

parser English parser test.in

twolf CAD placement

and routing

test.in

vpr FPGA circuit

placement and routing

test

Allocation intensive benchmarks

boxed-sim Balls and box simulator -n 10 -s 1

cfrac It factors numbers a 36 digit number

ptc Pascal to C convertor mf.p

espresso PLA optimizer largest.espressoFig. 4. IMM framework: the use of two kernel processes for

simulating IMM configuration.

Fig. 3. Intelligent Memory Manager: extended centralized controller.

Fig. 2. Intelligent Memory Manager: embedded DRAM configuration.
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benchmarks widely used to evaluate memory allo-

cators. They are briefly explained in Table 1.

In this work four general purpose allocators are

studied for their locality behaviors based on differ-

ent allocation strategies. The allocators studied in
this work are:

• BSD allocator.6 This allocator is an example of

a Simple Segregated Storage technique [34]. It is

among the fastest allocators but it reports high

memory fragmentation. In the figures this allo-

cator is referred to as ‘‘bsd’’.
6 Known as Chris Kingsley�s allocator-4.2 BSD Unix.
• Doug Lea�s allocator. Perhaps the most widely

used allocator is Doug Lea�s. We have used ver-

sion 2.7.0, an efficient allocator that has bene-

fited from a decade of optimizations [18]. For

request sizes greater than 512 Bytes it uses a
LIFO Best Fit method. For requests less than

64 Bytes it uses pools of recycled chunks. For

sizes in between 64 and 512 Bytes it explores a

self adjusting strategy to meet the two main

objectives of any allocator: speed and high stor-

age utilization. For very large size requests

(greater than 128 KBytes), it directly issues

mmap system call. ‘‘lea’’ is used to reference
data for this allocator in our figures.
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• Segregated Binary Tree. SBT contains 8 binary

trees each for a different class size. Memory

chunks less than 64 bytes and greater than

512 Bytes are kept in the first and the last binary

tree respectively. Each binary tree is responsible
for keeping chunks of a unique size range, and

sizes range in 64 byte intervals. For example,

the second binary tree�s range is [64,128) (viz.,

if a chunk�s size is x then 64 6 x < 128). In the

figures ‘‘sbt’’ is used to refer to the data set

belonging to this allocator.

• Segregated Fit. We have written our own ver-

sion of Segregated Fit algorithm referred to as
‘‘sgf’’. In the structure, this allocator is similar

to our SBT but the memory chunks are kept

in segregated doubly linked lists instead of bin-

ary trees. LIFO Best Fit is chosen for placement

policy of each list.
5. Empirical results

As mentioned in the last section, we have car-

ried out our experiments under two scenarios:
Table 2

Total number of references for Conv-Conf, Conventional Configurat

Bench/alloc. bsd lea

boxed-sim 2.65e+09 2.62e+09

cfrac 3.38e+09 3.23e+09

espresso 6.84e+08 7.95e+08

gzip 1.016e+10 1.02e+10

parser 1.071e+09 1.16e+09

ptc 8.87e+07 9.2e+07

twolf 2.92e+08 2.93e+08

vpr 1.81e+10 1.81e+10

Table 3

Total number of references for IMM-Application

Bench/alloc. bsd lea

boxed-sim 2.54e+09 2.54e+09

cfrac 2.78e+09 2.79e+09

espresso 1.41e+08 1.41e+08

gzip 1.01e+10 1.02e+10

parser 9.28e+08 9.29e+08

ptc 9.2e+07 9.2e+07

twolf 2.91e+08 2.92e+08

vpr 1.8e+10 1.8e+10
• Conv-Conf: Conventional Configuration, in

which case both application and its allocator

are running on the main CPU using a single

cache.

• IMM: Intelligent Memory Manager, where a
separate processor executes memory manage-

ment functions. IMM consists of two parts;

IMM-Application that is the application code

running on the main CPU, and IMM-Allocator

that is the memory management operations

running on the processor embedded in DRAM

chip (with a separate cache).

Tables 2–4 show the total number of references

for Conv-Conf, application part of IMM (total

number of loads and stores issued by main CPU

when running the applications), and allocator part

of IMM (total number of references issued by

DRAM logic when running the allocator portion

of the applications) respectively.

Several observations must be made with the
data shown in these tables. From Table 3, it

should be noted that the number of references

made by the application (IMM-Application) are
ion

sbt sgf

3.08e+09 2.8e+09

5.81e+09 4.26e+09

2.05e+10 8.86e+08

1.02e+10 1.02e+10

3.16e+09 2.49e+10

8.81e+07 8.81e+07

2.97e+08 2.93e+08

1.82e+10 1.81e+10

sbt sgf

2.54e+09 2.54e+09

2.79e+09 2.79e+09

1.41e+08 1.41e+08

1.02e+10 1.02e+10

9.29e+08 9.29e+08

9.2e+07 9.2e+07

2.92e+08 2.92e+08

1.8e+10 1.8e+10



Table 4

Total number of references for IMM-Allocator

Bench/alloc. bsd lea sbt sgf

boxed-sim 1.36e+08 1.11e+08 1.01e+08 1.02e+08

cfrac 318459 268149 248351 249147

espresso 1.3e+08 1.86e+08 1.01e+08 1.01e+08

gzip 1.4e+06 2.9e+06 1.2e+06 1.2e+06

parser 1.53e+08 1.97e+08 1.21e+08 1.23e+08

ptc 5.9e+06 9.9e+06 6.2e+06 6.2e+06

twolf 676653 675783 542219 548174

vpr 580947 675783 542219 512907
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approximately the same for all allocators, across

all benchmarks. The exception is for ‘‘cfrac’’ and

‘‘parser’’. The ‘‘bsd’’ allocator seems to have fewer

references, since these applications fit better with

the allocation strategies used by ‘‘bsd’’. In almost

all benchmarks with different allocators, the repre-

sented data demonstrates that the number of mem-

ory references of Conv-Conf is equal to the sum of
memory references of IMM-Application and

IMM-Allocator. For ‘‘sbt’’ and ‘‘sgf’’ allocators

we observe a decrease in the number of references

for IMM. We suspect the reason for such a behav-

ior due to our unoptimized algorithms. When

compared with more established allocators that

have benefited from years of fine-tuning, our allo-

cators provide great opportunities for hardware
based optimizations such as out of order execution

and branch predictions. We have conducted our

experiments on Alpha 21264, an out-of-order

microprocessor that is able to fetch four instruc-

tions per cycle [15]. It employs a sophisticated

branch prediction and speculative instruction

fetch/execute. While such hardware optimizations

are also available for other allocators, since the
implementations are already higher optimized,

separating the allocator functions have not shown

significant improvements, unlike our allocators.

Among benchmarks used throughout this paper,

‘‘ptc’’ disagrees with others in showing fewer mem-

ory references when application and its allocator

functions are separately executed by two processes

(IMM). This happens because ‘‘ptc’’ contains only
allocation requests and no de-allocation. Although

we have partially removed the references associ-

ated with interprocess communication overhead

due to our framework, this overhead for ‘‘ptc’’
tends to dominate the impact of separating the

execution of application and its service functions

in terms of number of references. Nonetheless,

we feel that the cache miss reduction achieved by

extracting the allocator functions from the appli-

cation is still verified by our data.

5.1. Comparison of cache performance

It is our aim to show the improvement in cache

performance obtained using the Intelligent Mem-

ory Manager. This improvement holds valid for

all cache levels. However, first level cache activity

attracts more interest because of its influence on

CPU execution time. Hence, in this subsection

we include data for first level cache only. We have
chosen the cache sizes and block sizes based on

modern systems. Figs. 5 and 6 show the total num-

ber of cache misses for Conv-Conf and IMM-

Application with 32 KBytes cache and 32 Bytes

blocks. In almost all benchmarks, it is very clear

that IMM configuration has removed the cache

pollution caused by memory management service

functions. This is better shown by Fig. 7, which re-
ports the percentage of IMM-Application cache

miss improvement. The data shows 60% reduction

in the number of cache misses on average.

As mentioned before ‘‘ptc’’ tends to behave

somewhat differently than other applications in

our benchmark suite. This is partially because

‘‘ptc’’ contains only allocations. In both ‘‘twolf’’

and ‘‘boxed-sim’’, the computation core of the
application dominates execution time requiring

fewermemorymanagement calls. Thus, these appli-

cations show insignificant improvements on cache

performance. It should be noted that negative
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impact (i.e., increase in cache misses) is primarily

due to the artifact of our experiments involving

the shared memory interprocess communication.

Although we have done our best to eliminate such
memory references, it is impossible to be certain

that all references caused by such communication

have been removed entirely.

5.2. Impact of cache parameters

In the next experiments we doubled the cache

line size to view the impact of changing this cache
parameter. Figs. 8 and 9 depict the results for
Conv-Conf and IMM-Application. Fig. 8 reports

fewer misses for Conv-Conf when cache block size

is increased. Fig. 9 shows that on average number

of misses increased in the case of IMM, when the
cache block is enlarged, albeit slightly.

When application with its memory management

functions is running on the main CPU (Conv-

Conf), it certainly possesses higher spatial locality

as compared with the case of IMM. Each chunk of

memory, free or live, contains its size information

(normally the first four or eight bytes of the

chunk). When the chunk becomes free, it will also
contain pointers used by the allocator to track the
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list of the free chunks. These items are kept in the

header of every memory chunk. The role of alloca-

tor obliges it to visit free chunks of memory and

hence either reading or modifying the information

kept in each chunk. When the execution of mem-

ory management functions (allocation and de-allo-

cation) entangled with application, its behavior

elevates spatial locality and lessens temporal local-
ity of the application. Thus, separating memory
management functions from application improves

temporal locality dramatically (on average 60%

as shown previously), and decreases spatial local-

ity of the application very slightly. Increasing the

cache block size for Conv-Conf results in fewer

cache misses (comparison of Figs. 5 and 8), be-

cause spatial locality of the applications is more

utilized. On the other hand, it results in more
misses for IMM-Application since it circumvents



1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

boxe
d

cfr
ac

esp
ress

o
gzip

parse
r ptc

tw
olf vp

r
ave

bsd
lea
sbt
sgf
ave

Fig. 9. IMM-Application cache misses, cache size 32 KBytes, cache block size 64 Bytes.

52 M. Rezaei, K.M. Kavi / Journal of Systems Architecture 52 (2006) 41–55
the temporal locality of the application7 (compar-

ison of Figs. 6 and 9).

5.3. Comparing cache behavior of allocators

Storage Utilization analysis as well as execution

performance of different allocators have been ade-

quately studied by others [3,13,32]. Surprisingly,
locality behavior of allocators has not been re-

ported as widely. This subsection is an effort,

although for only a subset of allocators, that rep-

resents the cache behavior of such useful service

functions of computer system.

Cache data shown here belongs to the allocator

portion of IMM configuration that runs on a sep-

arate logic integrated with DRAM chip. A small
cache has been considered to serve the IMM-Allo-

cator processor, because the chip area and number

of transistors on chip are limited. Fig. 10 illus-

trates cache performance of different allocators

for 512 Bytes direct mapped cache with 32 Bytes

block size. ‘‘lea’’ allocator shows the worst perfor-

mance due to its complexity and hybrid nature.

Mixing sbrk and mmap system calls, which is prac-
ticed by ‘‘lea’’ allocator for different object class
7 A larger cache block size with fix cache size means fewer

blocks. This is in the favor of spatial locality. Certainly, it is not

favorable for temporal locality since fewer blocks of memory

can be mapped to the cache at the same time.
sizes, may be a cause for such behavior. ‘‘lea’’ allo-

cator is followed with ‘‘bsd’’, which also benefited

from strong segregation for speed. This segrega-

tion causes ‘‘bsd’’ to reveal poor locality behavior.

Both ‘‘sbt’’ and ‘‘sgf’’ perform almost the same

as they benefit strongly from memory chunk reus-

ability. Their implementation leads to the reuse of

recently freed objects. Reusability seeds temporal
locality, which is the main advantage of these

two allocators.

It is quite obvious that cache performance of an

allocator is directly associated with its storage uti-

lization. Allocators with higher storage utilization

report better cache performance.
6. Conclusions

As the performance gap between processors and

memory units continues to grow, memory accesses

continue to inhibit performance on modern pro-

cessors. While memory hierarchy and cache mem-

ories can alleviate the performance gap to some

extent, cache performance is often adversely af-
fected by service functions such as dynamic

memory allocations and de-allocations. Modern

applications rely heavily on linked lists and ob-

ject-oriented programming. This requires sophisti-

cated dynamic memory management, including

allocation, de-allocation, garbage collection, data
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prefetching, Jump Pointers, and object relocation

(Memory Forwarding). Using a single CPU (with

its cache) for executing both service related func-

tions and application code often leads to poor

cache performance. Sophisticated service functions
need to traverse user data objects—and this re-

quires the objects to reside in cache even when

the application is not accessing them.

The motivation of our work is partly based on

the observations that frequently used service func-

tions when mixed with the execution of application

code become the major cause of cache pollutions.

The cache pollution can be removed by separating
the execution of these functions from application

code and migrate them to a different processor.

Service functions are also very data intensive, the

feature that made them suitable for execution in

a processor integrated with DRAM in a single

chip. This is yet another observation that moti-

vated Intelligent Memory Management research

and directed us towards Intelligent Memory De-
vices (viz., eRAM, Active Pages, and IRAM). In

this paper, we presented the cache data collected

from experiments on two schemes. First we con-

ducted our experiment when both application

and its memory management functions are exe-

cuted on the main CPU (Conv-Conf). We have

carried out our work by separating the execution

of memory management functions and application
(IMM). The cache data resulted from the latter
shows 60% improvement on average. In the case

of IMM, our experimental framework caused

some additional overhead due to the interprocess

communication, which we tried to remove by dis-

carding the references caused at the time of com-
munication-albeit not completely. We believe

that if the interprocess communication overhead

is thoroughly removed, one will achieve even more

cache miss reduction with IMM configuration.

We also studied the amounts of cache pollution

caused by different memory allocation techniques.

Some techniques have resulted in more pollution

while maintaining their goal for high execution
performance. For instance, Simple Segregated

Storage techniques are the best in terms of speed,

but as we have shown in this work, they illustrate

poor cache performance and high cache pollution.

Since employing a separate hardware processor

eliminates the cache pollution caused by an alloca-

tor, we can consider the use of more sophisticated

memory managers. Other dynamic service func-
tions such as Jump Pointers to prefetch linked data

structures and relocation of closely related objects

to improve localities can also cause cache pollution

if a single CPU is used—such service functions

drag the objects through the processor cache.

These functions can also be off-loaded to the allo-

cator processor of Intelligent Memory Manager in

order to benefit from their performance advan-
tages, while maintaining low cache miss rate.
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No matter how substantial is the contribution

of a research, there is always place for further

improvement. The main issue of concern in this

work is the synchronization scheme between

IMM-Application processor and IMM-Allocator
processor. This will become evident as the actual

design of the IMM chip is pursued. It is also in

our interest to investigate more about the speed

of IMM chip and how fast it should be to reveal

improved execution performance. We intend to

address all of these issues when our cycle time exe-

cution driven simulator is completed.
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